Considerations on Informatics Systems with Free/Open
Source Software: the Environmental Information
Systems Example

Kostas Karatzas, Asterios Masouras, Athina Kaprara and Anastasios Bassoukos

Aristotle University, Department of Mechanical Engineering. Thessaloniki, Greece
kkaraleng.auth.gr, {oneiros, akap, abas)@1sag.menq.auth. gr

Abstract. Improved access to environmental information is the basis for a
higher degree of involvement of citizens and stakeholders in environmental
decision-making. Environmental Information Systems play a kev role in
contemporary urban environmental management stralegies. and are a
prerequisite for the proper. timely information of the public; yet the fuzzy
nature of environmental information requires for systems that can make
optimum use of informatics and telecommunications infrastructures to address
environmental management needs. while remaining open-cnded. easy o use
and inexpensive to implement and opcerate. In this paper. we will attempt to
present the characteristics of Free/Open Source software that render it
appropriate for use in developing Environmental Information Systems,
accompanied by real world project examples.

1 Introduction

The Free/Open Source Software (FOSS) movement is a new software development
paradigm that emerged in the last decade and relies directly on the volunteer cﬂ:ons of
geographically dispersed developers of varying affiliations and proficiencies. In
contrast with previously established practices, FOSS recognizes a number of
“freedoms™ granted to the user regarding his ability to interact with the soﬂ\\fqrc apd
propagate its use. Unrestricted access to the software source code is a prccondmonﬂtor
most of these freedoms. and it is implied that the usefulness and “life expectancy of
such software is dependent on the continual revision and adaptation of its source
code.)

FOSS developers minimize redundancy by reusing and adapfing f:rcely available
best practice software and methodologies. thus concentrating investment on
innovation. The support FOSS projects receive from the user-developer commgn.uy
serves to provide guidance. reduce maintenance costs and enhance soﬁ\yarc }xsal?nht)".
therefore. the functionality and maintainability of software dcyclopgd in this way I?
not impaired by antificial limitations. Furthermore, t.he scmcc—oncmefl model o
FOSS allows for a broad range of contractors to provide support. and sunccvscr\";‘ge
and consulting fees are the only recurring expenditures, the Total Cost of Ownership
for solutions based on FOSS software is kept low.

213

Kostas Karar-=as. et al

2 Using FOSS Software Resources

In .thc Iz}sl decade. a new model has emerged for managing software
rchc§ dlrccl!)' on the common efforts of geographically dispersed develq
yary.mg affiliations and proficiencies. This software development paradigm is ?Crs o
in direct contrast with previously established business practices [1]). by full dis‘:c“e‘t
of the source code. volunteer effort and a number of “freedoms™ granted tzs"“
software user regarding his ability to interact with the sofiware and propagate is the
It is these characteristics of Free/Open Source Sofiware (FOSS). which rendel:.s‘.:'
flexible. economical and reusable. that make it appropriate for use towards buildinIl
publicly funded ICT projects [2]. especially those aiming at the dissemination ogf
information to citizens. such as online environmental pontals.
) The definition of Free Software recognizes some fundamental freedoms as
imparted by the author (the “licensor™) (hup://www.gnu.org/philosophy/frce-sw.hlml)
to the user (the “licensee™). inside a license agreement:
= The freedom to study how the program works, and the freedom to adapt the code
according specific needs
— The freedom to improve the program (enlarge. add functions):
— The freedom to run the program. for any purpose and on any number of machines:
- The frecdom to redistribute copies to other users.

The Open Source definition (http://www.opensource.org/docs/definition.php)
further extended these principles. Open Source Software and Free Software are
terminologies which have been used to describe software developed and distributed
on the above and similar principles, with terms such as Libre software [3] used to
group them together. Although the terms and their underlying movements are not
fully interchangeable. mention of them throughout this paper should be taken to be,
for purposes of simplicity.

Unrestricted access to the software source code is a precondition for most of these
freedoms. and it is implied that the usefulness and potential for reuse of such software
is dcpendent on the continual revision and adaptation of its source code. It follows
then that the “life expectancy™ of software developed in this way is a direct outcome
of its popularity with developers (who will choose to devote time to improve
functionality) and users (who provide constant feedback to developers on needed
improvements and fixes).)

The FOSS software community consists of individuals or groups of individuals
who contribute to a particular FOSS product or technology: as a consequence of the
previous statement. this also includes the users of the software. The FOSS process
refers to the approach for developing and maintaining FOSS products and
technologies. including software, computers. devices, technical formats. and computer
languages. .

The use of FOSS software towards building environmental information systems
hinges on three points [4] providing benefits to users, developers and operators of the
software: economy, quality and philosophy.

Projects thay

214

Considerations on informarics Systems with Open Source: The environmenial
2.1 Economy

Reusing and adapting freely available best practice software. instead of resortin to
monolithic proprictary solutions or developing everything from scratch Ic:adsg to
minimizing rct;iundancy in development efforts (thus. by extension, concentrating
investment on mnovalign) and obtaining the best value for the citizens’ money. while
relying on the community to spark developer interest in the software and provic}c user
feedback reduces maintenance costs and prolongs its’ useful life cycle. A corollary of
this is that the functionality and maintainability of the software is not impaired by
antificial limitations (i.e. not intrinsic to the software itself). such as expiring licenses
and financial plights to the parent company.

The Total Cost of Ownership (TCO) of solutions based on FOSS from a contractor
point of view is alleviated [3]. [5]. since consulting fees are seen as fully useful
expenditures, in contrast with licensing fees which mostly serve as instruments of
amortization on behalf of developing companies. Since Environmental Information
System development is often supported by public funding. no such amontization must
burden their future customers past project end. For the service-oricnted model of
FOSS it should be noted that costs of support and maintenance can be contracted out
to a range of suppliers. as per the competitive nature of the market enforced by source
disclosure [6].

2.2 Quality

The main objective in software engincering is not necessarily to spend less but rather
to obtain a higher quality for the same amount of money. and aim to enforce the best
possible safeguards for quality and safety in the product. Avoiding to “reinvent the
wheel™ by using funds to develop new applications rather than re-inventing already
developed parts. as pointed out elsewhere. speeds up technological innovation -as is
also the case with the increased cooperation and full source code disclosure and
availability required by FOSS tenets. The scientific results of such projects are subject
to peer scrutiny and directly comparable with similar endeavors, thus ensuring
conformance with best practices to a large degree. Finally. as has been repeatedly
demonstrated in recent years [7]. [8). software security concerns are better addressed
through a continuous process of issue disclosure and user-developer cooperation in
order to overcome them.

2.3 Philosophy

Reliance on proprictary software for science results in vendor "lock-ip" as regards to
data formats, making it difficult to pursue common protocols for data interchange and
storage, for instance. as it is required by modem systems dealing with the problem of
environmental data heterogenceity [9). In contrast, FOSS developers an.d proponents
promote the use of open scientific protocols. through their use in appllcauonst asa
means of consolidating rescarcher efforts. minimizing the cost and dependencies of

technical innovation.

215

Kostas Karatzas, e al.

thelnFE))ré)rSnc:::gg best practices. transparency and quality control in so
; veément serves also to further collaboration betw
profcssxopal communities and the private sector in the interests o
and Iasur)g service environment for the public. The free dissemina;

!echnologlcal advances (both in terms of cost and material availability) relalﬁn oF
lnforr.na.\tlcs services. although not a panacea. can be secn to eventually he] cmlg o
the digital divide [10]. by allowing poorer countries to “catch up”. Finally ll:)e -
code itself can be scen as literature [11], {12], thus as a human ende‘avors:mrce
preserved as a cultural heritage for the future generations. 0 be

ftware desi
een public bodige::
fcreating a flexipe

3 Ecological Information Systems

The holistic nature of ecological information systems requires them to deal with the
problem of environmental data heterogeneity. by adopting common protocols for data
interchange and storage. FOSS promotes the use of open data standards as a means of
consolidating researcher efforts and increasing technical interoperability. Thus it can
be demonstrated that the right of public access to environmental information, as has
been defined in contemporary legislation, is better served by utilizing open, flexible
and low cost dissemination platforms that make use of software developed by the
community. In the following chapter, examples of FOSS applications are presented,
all related to air quality management systems and all addressing problems that
converge into the neced of openness. flexibility, adaptability, resource optimum,
environmental management solutions.

4 Project Examples

In the following. we present a sampling of informatics projects funded under EC
initiatives that strived to produce environmental-ecological information systems for
public use. Procceding from the early recognized need for open architectures,
platform independence and common data protocols. these systems gradually came to
fulfill and embrace the philosophy and principles of the FOSS model, while
development of the last example mentioned was largely based on FOSS software
tools

4.1 The APNEE/APNEE-TU Projects

The APNEE project (http://www.apnee.org) [13]. [14]. contributed to the European
research on public information systems and services, by developing cilizen-ccntgrcd
dynamic information services aimed at providing intelligence about the ambient
environment. These services advise the citizen about the air quality in terms qf‘an air
quality index and offer guidelines for behavioural change. Awareness services are
based upon an array of information channels to reach the citizen. APNEE further
utilises various intuitive presentation formats to convey information. The

216

Considerations on informatics systems with Open Source: The environmental ..

configuration of such ambient technolo

channels has been evaluated in field tria)

It was apparent from the beginning o
and cost-effective architecture was need
needs of urban agglomerations through
would allow a measure of personalizat
to citizens. For this reason, developme
FOSS technologies.

APNEE / APNEE-TU is composed of a set o
the c:latabfLSC. the serv‘icc triggers. the regional server application and basic
functionality modules (licensed as FOSS), as well as proprietary extension modules
developed by telecommunication partners to provide services based on local ICT
infrastructure conditions. Although the core modules are considered to be the heart of
the system. yet. they may be “by-passed™ or not implemented. in cases where only the
electronic services are of interest for installation and operational usage. provided that
there is a database and a pull and push scheme provided via alternative software
infrastructures. The modules and the interfaces that have been developed to build the
regional server are the following:

o APNEE Environmental Database: the database forms the back-end of all APNEE-
TU services and consists of a schema for environmental data series, as well as
wamings, medical advises, pollutant information: spatial data for the WebGIS
component. and user information and personalization data for subscribers,
APNEE-TU provides an object-relational persistence layer to allow cooperation
with a variety of FOSS and commercial RDBMS systems. The environmental
database is thoroughly described in APNEE D3.

® APNEE Regional Server: the centerpiece of the APNEE platform. the regional
server provides a web-based anchoring point for APNEE services. configured and
localized as per the needs of each installation site: also provides administrative
interfaces for a variety of functionalities, such as subscription to the newsletter. and
email services.

® Push services: these services consist of modules that are executed on when changes
in the database occur. What kind of database change that will launch a module. is
configured in the trigger. Push services consist of sending SMS and email
messages to the citizen periodically. or upon user specified conditions, and are
mostly used to send out alerts and warnings.

® Pull services: these services are used whenever another application requests
information from the database. This includes requests made from users via WWW,
PDA, or WAP, and requests from automatic processes using the XML-RPC or
SOAP interface.

gjes and the selection specific information
s in different European regions,

f the APNEE project that a flexible, modular
ed. to support the environmental information
casy-to-use and easy-to-access interfaces that
on / customization in order to prove attractive
nt of the APNEE regional server was based on

f reference core modules, including

Implementation of the APNEE regional server was based on Java gervlels [15].
server-based web applications, and a variety of technologies made ayallable by. the
Apache Foundation (Fig. 1). The APNEE regional server programmaugally proxflded
service front-ends to the environmental database through an obj.ecl rclauon.al
persistence layer (Apache Torque [16]). as well as Web Services [17] interfaces (via
XML-RPC [18] and Apache Axis [19]) Development of the 'rcglopal scn"c;
application itself was based on Jakarta Turbine [20]. a modular service oriented wel

217

Kostas Karatzas, et al.

application framework: Jakarta Velocity. a dynamic HTML-based template
and Apache Ant. an automatic build and deployment scripting system. Final|
Tomcat. was chosen as the default serviet container for both develop
production use. ’

. In recognition of the value of the FOSS software paradigm towards build;
informatics systems for the public. and in order to preserve and dissemim:g
development efforts. the APNEE-TU project produced a “reference implcmemati()n“e
composed of the environmental database, regional server and core modules, which is
licensed as FOSS. ®

enginc:
Y. Jakany
ment ang

| B SMS
1] Sy .y
t Auxill:ary technoiogies W i
-~ (Perl. WHL. C) S -
// i GSM (GPRS,
\‘) :j/. ' Ao P S § s
(S G 1 R R@.(" —.> Velodity
| I - Seriis Tempiate
Database :i :fz:f\::’c;n Pacincadll engine — g
| —
” ;é," \ Development _ﬁ'f."ff’:"
| J.;_A The Jakarta Project environment _(" L_
Data | Business Services
provider ! logic Interface

Fig. 1. The APNEE-TU services architecture materialisation for Thessaloniki, Greece

4.2 The ECOSMES Project

In the frame of the e-LLCA project (http://www.elca.enea.it/). a system consisting of
web-based applications for supporting the adoption of Integrated Product Policies in
SMEs was developed. The authors undertook the development of a number of
modules-applications. including news, events. consultancies. a documents file
manager. an cco-products list. a newsletter, a mail notification service, and a contacts
and links section. on the basis of predefined functional specifications. These modules
represent a significant part of the ECOSMEs web site (htip://www.ecosmes.net/) lh'c.xl
is designed to help SMEs carry out assessments on their products to establish their
environmental impacts and assist with eco-design.

218

Considerations on informatics systems with Open Source: The environmental ...

Tools and technologies used

From the start of the project. several FOSS {
prototyping and development. due to the int
development team:

Tomcat was naturally selected as the application container, as the team had
extensive previous C)fpcriencc with its use in past projects. Tomcat being the
reference l.mplcmenlauon of web application servlet containers. and having proven a
robust choice for both development and production use it was felt that it would be a
more than adequate choice.

Torque [16] was chosen as the Object-Relational bridge. While it is considered too
intrusive by some. as business objects will need to inherit from Torque-generated
classes. it was also utilised in the APNEE project and the team had fluency in using it

CV'S [21] was used for source code revision control. and it is considered an
industry slandflrd. While Subversion [22] was also considered for use. it was rejected
because at project start it was still an unproven technology.

Eclipse (23] was chosen as the IDE. Eclipse was a relatively new addition to the
team’s toolbox. with less than two months usage before the project start, but proved
an extremely usable and productive tool, especially where extensive automated (eg.
refactoring) or team (eg. code review) operations where concerned.

Lomboz [24] was the plug-in used to add J2EE capabilities to Eclipse.

SysDeo offered its excellent Tomcat integration plug-in for Eclipse. of which
heavy use was made.

PosigreSQL [25] was the database specified by the technical specifications: as the
team had been using it as a default development and production RDBMS, it was felt
that its use would be more than adequate for the requirements of the project.

ools suggested themselves for use in rapid
€nse constraints externally imposed on the

The development process
While the team had previous experience with CVS. it was in the context of slow,
medium-sized updates of about once per week to once per month. The pressure on the
team, combined with the ease-of-use of productive tools like Eclipse. amalgamated to
give the development process an almost Extreme-Programming-esque [26] quality, as
the process was almost completely driven by Continuous Integration, concurrent.
multiple commits, and sometimes even pair programming.

The final web application delivered consists of more that 24000 written lines of
code plus 65000 lines of automatically generated code via the development tools
spread out over 426 Java classes.

Experience gained

Due to the constrained schedule of the project. several other technologies were
considered but rejected due to retraining costs that would have to be incurred. lr}
hindsight however, it is apparent that their adoption would have improved the teams
overall productivity. For example. a good portion of the project mvolvqs data fgnn
entry, verification and presentation. for which Struts would seem the obvious c.ho:.ce:
however. questions about possible integration issues \.vilh the rest of t.hc application
were not resolved carly enough. resulting in its exclusion from the project. The tegr?
also learned to rely on its tools and make optimal use of each member’s potential.

219

Kostas Karat=as, et af

whi -10- ; .
é hllel.faftc to .facc~ dialogue emerged as the most potent communication m
me limited situations. Finally, valuable insights were gained into the com

mplcmennng u:ue multilingual web applications. which can only be deriv.
development of similar solutions.

edium i
plexities of
ed by actyg

S Conclusions

The nced for collaborative information management modules that would allow for
implementing a homogenized. service-based. user perspective of heterogeneoys
environmental-ecological data and computational resources was the main drive
towards modular and open software architectures in projects such as the ones
previously mentioned. It was also made apparent that project design and development
could benefit from the use of Free/Open Source Software. This was mainly initiated
within the last decade via the usage of Intemet based communication infrastructures,
leading to the flourishing of platform-independent (eg. Java based) software module
implementations and the need for cost-effective and reliable informatics solutions,
APNEE/APNEE-TU verified the trends outlined above and for the first time provided
a flexible, cost-effective working solution for implementing a public environmental
information ICT infrastructure, making use of resources developed by the FOSS
community. In addition. the ECOSMEs project experience verified the power,
flexibility and effectiveness of FOSS under intense and demanding software
development procedures.

6 Acknowledgements

The authors greatly acknowledge the European Commission for supporting research
projects APNEE and APNEE-TU (DG Infso. Systems and Services for the Citizens)
and project ecoSMEs (DG Infso. e-content). Prof. Nicolas Moussiopoulos who co-
ordinated the participation of the Laboratory of Heat Transfer and Environmental
Enginecring (LHTEE) of the Aristotle University of Thessaloniki to these projects is
also acknowledged. as the authors were affiliated to LHTEE during the time they
performed the work described in the present paper.

References

1. Raymond. E. S. The Cathedral and the Bazaar (2000).
http://catb.org/~esr/writings/cathedral bazaar/

2. Berlecon Research, ProActive Int.: /Free/Libre and Open Source Sofiware (FLOSS) Survey
and Study (2002). http://www.infonomics.nl/FLOSS/index.htm

3. EWGLS-European Working Group on Libre Software: Free Software / Open Source:
Information Society Opportunities for Europe (2001). http://eu.conecta.it/paper.pdf)

4. Interchange of Data between Administrations -European Commission. DG Enterpnse:
Pooling Open Source Softiware An IDA Feasibility Study (2002).

220

. Schauer. Th.: The Sustainable Information Society,

Considerations on informatics Systems with Open Source: The environmental ...

hutp://europa.eu.inVISPO/ida/jsps/index.isp? P :
ence&documentl D=550 Jsps/index.jsp?fuseAction showDocument&parent=crossrefer

Mitre Corporation: A Business Case Swdy Of Ope

. por n Source Software (2002)
hutp://www.mitre.org/work/t '
waFr)c.pdf rg/work/tech_papersitech _papers_ol/kenwood_soﬁwarc/kcnwood_soﬂ
Lemer. J. Tirole. J.: The Simple Economi
hllp://idca&rcpcc‘org/p/nbr/nberwo/7600.hUnl w8 oh Open; o B0
Perens, B.. Why Security through Obscuri Won'
hltp://slashdol‘org/fcatums/980720/08l9202.shtml Y SHE ez 200
Schneier. B.: Full Disclosure, Crypto-Gram Newsletter
hup://www.counlerpane.conVcryplo-gram-o| 1. htmi
Visser U.. Stuckenschmidt H.. Wache H., Vi
Efficiently: Sharing Data and Knowled ete
http://citeseer.nj.nec.com/309536.himl

issue 111 (2001).

. Visions and Ri .
http://www global-socicty dialogue.org/saskia pdf s (2

. Knuth, D.E.: Literate Programming. CSLI Lecture Notes 27. ISBN 0-937073- 80- Stanford

(1992)

. Graham, P.: Hackers and Painters (2003). hup://wmw.paulgmham,com/hp.hlml
. Bohler. T.. Karatzas, K.. Peinel. G.. Rose. Th.. Jose. R.S.: Providing mult-modal access to

environmen{al data-customisable information services for disseminating urban air quality
information in APNEE. Computers, Environment and Urban Systems 26(1) (2002) 39-61.

- Karawzas. K.. Masouras. A.. Kaprara. A.. Bassoukos, A.. Papaioannou, .. Slini. Th..

Moussiopoulos, N.: Environmental Information Systems and the Concept of Environmental
Informatics. In: Scharl. A. (ed.): Environmental Online Communication. Advanced
Information and Knowledge Processing Series. Springer-Verlag, Berlin Heidelberg New
York (2004) 3-10

. Servlets: Java Servlets technology. http://java.sun.com/products/serviet/

. Torque: a Java persistence layer. http://db.apache.org/torque/

- Apache Web Services Project. http://ws.apache.org

. XML-RPC, XML-based Remote Procedure Calls. http://www.xmlrpc.com/

. Axis: SOAP implementation for Java. http://ws.apache.org/axis/

. Turbine — a web application framework. http://jakarta.apache.org/turbine/

. CVS — Concurrent Versioning system. http://www.gnu.org/software/cvs/

- Subversion —a Version Control System. http://subversion.tigris.org/

- Eclipse: An Extensible IDE. hutp://www.eclipse.org/

. Lomboz. an J2EE plugin for Eclipse. http://forge.objectweb.org/projects/lomboz
. PosigreSQL. an Open Source Relational Database Management System.

http://www.postgresql.org/

. XP: Extreme Programming, an Agile development methodology.

http://www.extremeprogramming.org/

%)
1
-~

